
Paper DM01

New Technologies for Delivering Data to Internal and External Clients
Sigurd W. Hermansen, Westat, Rockville, Maryland

ABSTRACT
Back in the Big Iron era, programmers captured, stored, and
delivered data in the same form. Files were all we knew. Now we
have visual representations: Web data entry forms, MDBB's, Web
page browsers, and electronic codebooks. What we consider the
same 'data' have different shapes and structures in container
objects than in an RDBMS or in an XML stream. So, how do we get
from forms to data? How do we serve data to internal or external
clients? To explore these questions we trace a set of data from
capture to database to delivery. Blaise(R), Oracle Clinical(R), Web
server pages, and SAS(R) FS/AF/SCL forms illustrate alternative
DE programs. 'Flat files', 'drill downs', RDBMS schema, and tagged
fields in data streams serve as examples of data products.  We will
illustrate methods that preserve essential data as they pass through
a series of transformations via several scenarios.

INTRODUCTION
Displays of data provide visual cues to help humans comprehend
them. Viewers of data displays do not typically distinguish data from
visual cues when they look for information. A simple paper form
defines data items or fields:
Person name:______ ID ______ #dogs _____
dogs: 1. breed____ age_____

2. breed____ age_____
……………………..

Infraction ___ dog __ date ______
___ dog __ date ______
   ……………………………

Viewers understand intuitively what to enter in each field. Good form
design promotes reliably intuitive understanding of the pragmatics of
data entry and display.

Computers have none of the visual intuition that viewers have.
Sequencing, implicit typing, and spacing do not translate directly into
bits and bytes. Precise identification of data items requires an
explicit indexing scheme. Mapping from data displays to computer
storage has to be done under the control of complex and
sophisticated programs.

Developers of data entry forms (DEF) and data display forms (DDF)
rarely start programming these data objects from scratch. A number
of programming environments provide automated support for
development of DEF’s and DDF’s. Each programming environment
supports one or more databases (DB’s) under the hood.

Database programmers specialize in mapping and transforming data
from DEF to DB and from DB to DDF.  In a brave new world of
enterprise, distributed, federated, and Web databases, cross-
platform and cross-database development has become the norm,
not the exception. Examples in the next sections illustrate how data
morph as they migrate from DEF to DB and from DB to DDF.

DATA ENTRY FORMS (DEF’S)
Developers of a DEF have target applications in mind. An automated
data collection instrument presents visual cues and slots for entering
data into forms. Depending on the design and capabilities of the
system supporting the DEF, it may also display data that have
already been stored in a DB. That requires an ability to capture
identified information first, then to transmit a query that selects data
from a DB. The DEF queries the database to validate entries, and to
insert or update a DB.

DEF: BLAISE SCREENS
Blaise is a widely-used software system for computer-assisted
interviewing (CAI) and survey processing.  A DEF targeted at CAI
must replicate the basic process of displaying a questionnaire form
and using a pencil to enter data in prescribed slots. Further, it must
implement ‘skip patterns’ in survey instrument by displaying one
screen or another depending on the response to a lead-in question.
(eg., Q29: How many dogs do you own? If 0, skip to Q35; else
answer Q30-Q34 for each dog.) We can picture this pattern of
responses as a row of columns that bulges into a table to
accommodate data on one or more dogs:
Column[person1]: #dogs _____

|     dog i=1:   breed____ age_____
table: |     dog i=2    breed____ age_____

| ….
|  Inf_i=1:___ dog __ date ______

table:    |  Inf_i=2:___ dog __ date ______
|    ……………………………

Column[person2]: ……

Whether clients might wish to have data delivered in the same form
depends on intended uses of the data.

DEF: ORACLE CLINICAL CASE REPORT FORMS (CRF'S)
Tight control of reporting of adverse reactions to drugs has led to
rigid standardization of DEF’s designed to support clinical trials.
Each trial accumulates an unbounded stack of case event reports
from medical centers. A simplified event form captures column
values in each row of CRF data:
protocol: __________
  Person: __________
      Dog: __________
         event_date:__________
         event_type: __________
    event: __________
eg. (12,Jones,3,12/18/02,INF,X3243)

The first five data items index each event. The order of these index
values does not matter. The event_type has the same role as a
column name in a row of patient events. Expanding the domain of
the event_type allows the form to accommodate new types of events
without modifying the DEF (or the DB structure underneath the
DEF).

DEF: SAS/AF FRAMES
The SAS System V8 SAS/AF product serves as a convenient
example of a visual object toolkit that programmers can use to create
simple or complex DEF’s. Visual objects appear as displays or parts
of displays on a computer screen, or control how displays ‘behave’.
Objects have properties. Programmers control the behaviors of
objects by sending messages to detect and change property
settings.

SAS/AF objects bind values entered on a DEF object to object
property names. A programmer assigns instances of properties to
data elements in a database.

DEF: HTML FORMS
The HTML protocol supports DEF’s in Web pages. The <FORM>
and <INPUT> tags identify different types of input fields in an HTML
DEF and bind the value entered in the ID slot on the HTML form to a
variable label (Id):

<FORM>
………



<TR><TD WIDTH="3%" VALIGN="TOP"
HEIGHT=31><P></P></TD>
<TD WIDTH="13%" VALIGN="TOP" COLSPAN=2 HEIGHT=31>
<B><FONT FACE="Arial"><P>       ID</B></FONT></TD>
<TD WIDTH="31%" VALIGN="TOP" COLSPAN=5 HEIGHT=31>
<FONT FACE="Arial"><P>
<INPUT TYPE="TEXT" MAXLENGTH="50" NAME="Id">
</FONT></TD>
<TD WIDTH="52%" VALIGN="TOP" COLSPAN=4
HEIGHT=31><P></P></TD>
</TR>
……..

Which displays in a Web browser as

Web browser programs (Netscape, MS Internet Explorer, Opera,
Mozilla, etc…) support HTML DEF’s and attach lists of label-value
pairs to hyperlinks.

DEF: SERVER PAGES
Although open and flexible, HTML forms seem designed primarily to
support transfers of parameter values or other limited lists of data
items. Java Server Pages (jsp) and Active Server Pages (asp)
provide alternatives to HTML forms that support enhanced forms,
better data validation, and faster and more secure data transfer
methods. Support for server pages comes largely from servers.

Data for delivery to clients often originate from more than one DEF.
Different DEF’s transfer data to central databases. The visual format
of each DEF has to map to a common database structure.

DATABASES (DB’S)
Date makes a point of distinguishing a ‘database’, a logical
framework for data and the data that populate it, from a database
system that houses databases, whether DB2, Oracle, SQLServer,
Sybase, Informix, Ingres, or, yes, MySQL, and those database
systems outside the relational database system (RDBMS) mold,
such as XML databases. In the same sense, twelve ounces of cola
does not become ‘bottle cola’ when bottled or ‘can cola’ when
canned. In fact, to their discredit, database system developers put

additives in databases that blend logical database and
implementation features, and add to the difficulty of porting
databases to other database systems.

Database systems provide tools for database design and for
maintaining data integrity, but good database design and useful
database systems do not come in a box. Client requirements for data
deliveries often include irreconcilable differences. For example, a
requirement to deliver data as a ‘flatfile’ may force database
programmers to scrunch many interrelated dimensions of
observations into a two-dimensional structure. The next sections
present alternative data models and their strengths and limitations.
Each section includes a brief discussion of data transfers to and
from each data structure.

DB: FILE
A general layout of a file uses field names and descriptions to index
and model a DB. Repeating blocks (records) in a file map to field
names according to a scheme:
field-indexed repeating groups data model
group[dog]:=(breed,age)
record[person]=ph#,group[dog1],group[dog2],
eg. Jones,555-1212,dog1(cocker,3),dog2(mutt,2)

Each record ends with a line marker that separates one record from
another. An alternative data structure stores the same data in
repeating records:
record[person]
record[person,dog1]
record[person,dog2]
…..
eg. Jones,555-1212
       cocker,3
       mutt,2
        ……

The SAS System INFILE and INPUT statements and the
DBMS/COPY product provide a truly mature and very useful
technology for data capture from these and other special file formats
generated by DEF’s. Blaise exports field-indexed data and SAS
INPUT statements to read them (among the several options Blaise
offers for exporting data).

DB: MDDB
The two dimensional index [person,dog] points to a row of data in a
repeating record structure. In a multidimensional database (MDDB),
a full index points to individual data items, and partial indexes point
to rows or tables
 (eg. value[person,dog,event_date,event_type]).
The SAS MDDB product and other specialized systems map data
from DEF’s or intermediate data sources. An MDDB extends an old
technology, multidimensional arrays, to database object classes with
associated constructor methods. An MDDB often contains summary
data as well as details.

DB: XML
The hierarchical XML data model extends data value tagging in Web
documents to DB indexing. XML interprets a hierarchical structure of
tags as a multidimensional index:

<?xml version="1.0" ?>
……….
<PERSONS ID="111" NAME="Jones">
   <PETS ID="222" BREED="mutt">

    <FACT>
 <PETID>222</PETID>
<EVDT>12/18/02</EVDT>
<EVTYP>INF</EVTYP>
<EVNT>2203</EVNT>

    </FACT>
    <FACT>

 <PETID>222</PETID>
<EVDT>12/18/02</EVDT>



<EVTYP>VAC</EVTYP>
<EVNT>distemper</EVNT>

    </FACT>
 </PETS>

</PERSONS>
ÖÖÖ
The hierarchical XML data model embeds metadata in tags and
forces a somewhat arbitrary distinction between data labelled as
attributes and tagged data elements. The metadata tags make it
almost impossible to display or search an XML document without
mapping it to another format.

Fortunately, SAS provides thel XML Mapper application in V9 to
assist in designing an XMLPath map specification for specific forms
of XML documents:

<?xml version="1.0" ?>

<!-- 2002-12-10T02:39:43.786 -->
<!-- SAS XML Libname Engine Map -->
<!-- Generated by XMLAtlas, Version 9.0.1 -->

<SXLEMAP version="1.1" name="SXLEMAP" description="">

  <TABLE name="PERSONS">
    <TABLE-PATH>/PERSONS</TABLE-PATH>

    <COLUMN name="ID">
      <PATH>/PERSONS/@ID</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>3</LENGTH>
    </COLUMN>

    <COLUMN name="name">
      <PATH>/PERSONS/@name</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>5</LENGTH>
    </COLUMN>

  </TABLE>

  <TABLE name="PETS">
    <TABLE-PATH>/PERSONS/PETS</TABLE-PATH>

    <COLUMN name="PersonID">
      <PATH>/PERSONS/@ID</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>3</LENGTH>
    </COLUMN>

    <COLUMN name="ID">
      <PATH>/PERSONS/PETS/@ID</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>3</LENGTH>
    </COLUMN>

    <COLUMN name="breed">
      <PATH>/PERSONS/PETS/@breed</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>4</LENGTH>
    </COLUMN>

  </TABLE>

  <TABLE name="FACT">
    <TABLE-PATH>/PERSONS/PETS/FACT</TABLE-PATH>

    <COLUMN name="PersonID">
      <PATH>/PERSONS/@ID</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>3</LENGTH>
    </COLUMN>

    <COLUMN name="PetsID">
      <PATH>/PERSONS/PETS/@ID</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>3</LENGTH>
    </COLUMN>

    <COLUMN name="EVDT">
      <PATH>/PERSONS/PETS/FACT/EVDT</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>8</LENGTH>
     </COLUMN>

    <COLUMN name="EVTYP">
      <PATH>/PERSONS/PETS/FACT/EVTYP</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>3</LENGTH>
    </COLUMN>

    <COLUMN name="EVNT">
      <PATH>/PERSONS/PETS/FACT/EVNT</PATH>
      <TYPE>character</TYPE>
      <DATATYPE>STRING</DATATYPE>
      <LENGTH>4</LENGTH>
    </COLUMN>

  </TABLE>

</SXLEMAP>

The SAS XML engine uses the  XMLPath map as a guide for
parsing an XML document:

filename inxml "\\..\person.xml";
filename inmap "\\...\person.map";
libname inxml xml xmlmap=inmap;

proc contents data=inxml._all_;
run;
data persons;

set inxml.persons;
run;
data pets;

set inxml.pets;
run;
data fact;

set inxml.fact;
run;
filename _all_ CLEAR;
libname _all_ CLEAR;

The SAS XML engine decomposes the hierarchical relation Persons
– Pets – Facts into three tables (datasets) logically linked by person
and pet ID’s. The three tables retain all of the essential information in
the XML document.

DB: RELATIONAL DB (RDB)
In contrast to field-indexed or pointer-indexed DB’s, a relational
database uses column names as column indexes and columns of
key data values as row indexes. A normalized relational data model
represents relations among different dimensions of data as linked



tables.

Normalized RDB data model
Persons Dogs Infractions
   ID    ID    dogID
   Name    breed    type

   Age    date
   ownerID

A normalized RDB has an innate property that recommends it as a
deliverable to clients: The normal form of the database supports
reshaping of data into any structure the client may want (though not
necessarily from a reshaped set of data back to the original relational
scheme).

DB: DIMENSION-INDEXED FACTS SCHEME (DIFS)
In databases that contain data with many dimensions, relations
among data elements may number in the hundreds. A fully
normalized database divides each relation into a separate table and
soon reaches a level of complexity that complicates data entry and
reporting, and makes modifying the database a nightmare. Further,
few internal or external clients have the time or expertise to select
and combine data into useful datasets. While a dimension-indexed
DB scheme has the same design as a relational database for the
major dimension of a database (household, person, company, etc.),
a single ‘fact’ or entity-attribute table, indexes interrelated data
elements that might appear in many different tables in a relational
database. Others have called the same structure an Entity-Attribute-
Value (EAV) data model because it combines entity identifiers and
attribute labels in a composite key that serves as a natural index to
data items.

normalized DIFS data model
Persons Pets Events
   ID    ID    petID
   Name    breed    typePet
     birthDate    date
      ownerID    eventType

   event

This model combines a normal form with a structure that
accommodates new classes of data. Data warehouse architects
favor variants of the DIFS data model ,called star or snowflake
schema, for databases that house many repetitions of fact records.

DATA DISPLAY FORMS (DDF’S)

Deliveries of data to clients may include DB’s, DDF’s, and metadata.
In some instances, clients may want data subsets in different
database structures. Deliveries of public-use datasets or research
data also require access to metadata and detailed codebooks/data
dictionaries. DDF’s map selected contents of databases into forms
that build in visual cues for viewers.

DDF: REPORT OBJECT GENERATORS
A popular, generic report generator, Crystal Reports, belongs to a
class of programs that package formats and data into a report
object. It constructs objects that map DB contents to a DDF.

Database programmers set up a library of reports that clients can
select and run. Some prepackaged reports prompt users for
parameter values. A typical report generator builds queries of one or
more databases. Changes in database contents change the yields of
queries, and thus change the contents of reports.

DDF: SAS/GRAPH

SAS/Graph operates much the same as a report object generator. It
generates graphic objects and stores them in special graphics
catalogs. Clients with access to the SAS System can edit and
reformat graphic objects in SAS/Graph catalogs.

DDF: HTML/XHTML/PDF DOCUMENTS
Document mark-up languages automatically map data from
databases to Web pages that give clients static and dynamic DDF’s.
Arrays of hyperlinked values have the same function as MDDB drill-
down DDF’s and marginal thumbnail indexes.

The ODS and Mark-Up contexts of the SAS programming
environment maps results of SAS PROC’s to document types that
have extended support for an embedded mark-up language (HTML,
RTF, XML, pdf). Stylesheets, templates, and schema bring visual
elements effectively into dynamic mapping of database elements to
DDF’s.

WEB SERVLETS AND SERVER PAGES
Servlets and server pages give Web page developers convenient
access to DDF’s and supporting DB query languages. This example
(developed by James W. Cooper) illustrates the simplicity and
flexibility of Java servlet technology:

<HTML>
<TITLE> Servlet Test </TITLE>
<BODY> <H1> Servlet Test </H1>
<FORM ACTION="/servlet/HiYou"
METHOD="POST">
<INPUT TYPE="text" NAME="name" SIZE="20">
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY></HTML>

The servlet produces a form into which a viewer can enter, for
example, a report parameter value:

Servlet Test
Submit

Server pages support DDF’s much as they support DEF’s.
Embedded queries on Web pages supply data that populate DDF’s.
Web and internet servers (predominately Apache and IIS) offer
alternatives to MS Windows dynamic-link libraries and supplant
much of the functionality formerly provided by operating systems.

SAS in Version 9 catalogs the output of SAS procedures, including
PRINT, REPORT, and TABULATE, in DDF object catalogs much
like SAS/Graph catalogs graphic objects. Object libraries combined
with new interactive technologies open up new possibilities for
delivering DDF object catalogs to clients. Increasingly, internal as
well as external clients are asking database programmers to build
options for selecting, reformatting, and displaying information in
databases.

CONCLUSION
No one structure and organization of data meets all the needs of all
clients. Visual forms display data in fundamentally different
arrangements than one needs for storage of data on permanent
media. New technologies make mapping and reshaping of data
easier and better at preserving information in data. Web
technologies have kicked off a revolution in data collection, database
programming, and presentation of information. We have selected a
small sample of emerging technologies to present. The rapid



expansion of computer systems now underway suggests that new
technologies are emerging at accelerating rates.

SAS solutions have played important roles in discussions of
mapping data from visual forms to databases and back to visual
forms. Emphasis on SAS tools for database programming not only
suits the forum, it also aligns well with the realities of database
programming.

DISCLAIMER: The contents of this paper are the work of the author
and do not necessarily represent the opinions, recommendations, or
practices of Westat.

ACKNOWLEDGEMENTS
Colleagues at Westat, especially Kellar Wilson, Francis Harvey,
Karin Davis, and James Kuan, contributed to content and the style of
presentation. Mike Rhoads and Duke Owen reviewed the paper and
made valuable editorial suggestions. Francis Harvey guided me
through the twists and turns of SXLE architecture. The author takes
full responsibility for errors or omissions that remain.

REFERENCES
Date, C.J. and Hugh Darwen, Foundation for Object/Relational
Databases: the Third Manifesto (1998) Addison-Wesley (see p.
144).

Freibel, Anthony, '<XML> at SAS- A More Capable
XML Libname Engine', Proceedings of the Twenty-Seventh

Annual SAS Users Group International Conference, 27, (2002)
179.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.  Contact
the author at:

Sigurd W. Hermansen
Westat
1650 Research Blvd.
Rockville, MD 20850
(301) 251-4268
hermans1@westat.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective
companies.


